Preview

Discourse

Advanced search

INTEGRATED OPTIMIZATION MODEL OF MANUFACTURING AND TRANSPORTATION PROCESSES

https://doi.org/10.32603/2412-8562-2018-4-5-66-73

Abstract

This paper is devoted to constructing a linear mixed-integer model, finding a method and selecting an algorithm to determine the optimal solution to the production and transportation problem. This task can be attributed to non-trivial combinatorial problems on decision-making at an enterprise. This article contains a model of generalization of three previously known linear programming problems: production problems, time accounting tasks, and service flow problems. The target setting that integrates all three of the above problems into one, applies to the case when a manufacturing facility declares itself bankrupt and tries to manufacture products from the remains of raw materials for further sale and delivery of the goods produced meeting road system features, maximizing the profit and minimizing carrying costs. It is shown that such a problem can solve and visualize the package Matlab. Possible economic situations are presented where this model could be relevant. A number of possible upgrades to the model of this problem are considered.

About the Authors

R. S. Rogulin
Far Eastern Federal University
Russian Federation


D. E. Pleshanov
Far Eastern Federal University
Russian Federation


P. V. Nechaev
Far Eastern Federal University
Russian Federation


References

1. Siew Mooi Lim, Abu Bakar Md. Sultan, Md. Nasir Sulaiman, Aida Mustapha, Leong K. Y. Crossover and Mutation Operators of Genetic Algorithms // International J. of Machine Learning and Computing. 2017. Vol. 7, No. 1. Р. 9-12.

2. Писарук Н. Н. Исследование операций. Минск: БГУ, 2015.

3. Алексеева Е. В. Построение математических моделей целочисленного линейного программирования. Примеры и задачи: учеб. пособие / Новосиб. гос. ун-т. Новосибирск, 2012.

4. PASTEBIN. URL: https://pastebin.com/GpzYPpiP (дата обращения: 11.07.2018).

5. Sumathi P. A new approach to solve linear programming problem with intercept values // J. of Information and Optimization Sciences. 2016. Vol. 37, iss. 4. P. 495-510. DOI: 10.1080/02522667.2014.996031.

6. Daganzo C. F., Smilowitz K. R. Bounds and approximations for the transportation problem of linear programming and other scalable network problems // Transportation Science. 2004. Vol. 38, iss. 3. P. 343-356. DOI: 10.1287/trsc.1030.0037.

7. Gharehbolagh H. H., Hafezalkotob A., Makui A., Raissi S. A cooperative game approach to uncertain decentralized logistic systems subject to network reliability considerations // Kybernetes. 2017. Vol. 46, No. 8. Р. 1452-1468.

8. Палий И. А. Введение в линейное программирование: учеб. пособие. Омск: Изд-во СибАДИ, 2007.

9. Акоф Р., Сасиени М. Основы исследования операций. М.: Мир, 1971.

10. Land A. H., Doig A. G. An Automatic Method of Solving discrete Programming Problems // Econometrica. Vol. 28, No. 3. 1960. P. 497-520.

11. Chu W. S., de la Torre F., Cohn J. F., Messinger D. S. A Branch-and-Bound Framework for Unsupervised Common Event Discovery // International J. of Computer Vision. 2017. No 123 (3). P. 372-391. DOI: 10.1007/s11263-017-0989-7.

12. Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы / пер. с польск. И. Д. Рудинского. 2-е изд. М.: Горячая линия-Телеком, 2008.

13. Du X., Li Z., Xiong W. Flexible Job Shop scheduling problem solving based on genetic algorithm with model constraints // in Proceedings of the 2008 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM Singapore, December 2008. P. 1239-1243.

14. Протасов В. Ю. Максимумы и минимумы в геометрии. М.: МЦНМО, 2005.

15. PASTEBIN. URL: https://pastebin.com/B4MQ41j9 (дата обращения: 11.07.2018)


Review

For citations:


Rogulin R.S., Pleshanov D.E., Nechaev P.V. INTEGRATED OPTIMIZATION MODEL OF MANUFACTURING AND TRANSPORTATION PROCESSES. Discourse. 2018;4(5):66-73. (In Russ.) https://doi.org/10.32603/2412-8562-2018-4-5-66-73

Views: 278


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2412-8562 (Print)
ISSN 2658-7777 (Online)