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Introduction. The article continues a series of publications on the linguistics of relations 
(hereinafter R-linguistics) and is devoted to the origin of signs, their independence and 
determination of the dimension of linguistic spaces. 
Methodology and sources. The article is devoted to the continuation of the axiomatic 
approach, but for the identification process. Research methods are to develop the necessary 
mathematical concepts for linguistics in the field of identification. 
Results and discussion. The concept of a sign is defined and its interrelation with 
decomposition of linguistic spaces is established. This radically changes the attitude to signs 
in linguistics, where the “external” origin of signs is assumed. It is shown that the 
decomposition of linguistic spaces into signs spaces entails the independence of signs and 
the possibility of decomposition of objects of identification. It is fundamentally distinguished 
by the signs on the parameters. On the basis of the independence of signs it is possible to 
formulate the notion of dimension of linguistic spaces, which is defined as the smallest 
number of signs describing the linguistic space. In the lattice of linguistic spaces there is a 
division operation, which allows to simplify the selection of signs. 
Conclusion. The main conclusions are as follows. Signs, on the basis of which the 
identification of objects in the category, are abstract mathematical objects associated with 
the decomposition of linguistic spaces. Signs are independent from each other and allow 
not only to make decomposition of spaces, but also to decompose on parts objects of 
identification. Their origin is not related to their presence in the “outside world”, so it, as will 
be shown later, creates the basis for the emergence of language. 
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Лингвистическая модель данных для естественных языков 
и искусственного интеллекта. Часть 2. Идентификация 

О. М. Поляков 
Санкт-Петербургский государственный университет  

аэрокосмического приборостроения, Санкт-Петербург, Россия 
road.dust.spb@gmail.com 

Введение. Статья продолжает серию публикаций по лингвистике отношений (далее 
R-лингвистика) и посвящена происхождению признаков, их независимости и опреде-
лению размерности лингвистических пространств, аксиоматика которых сформулиро-
вана в первой части серии. 
Методология и источники. Методы исследования заключаются в разработке необхо-
димых математических понятий для лингвистики в области идентификации. 
Результаты и обсуждение. Определено понятие признака и установлена его взаимо-
связь с разложением лингвистических пространств. Это коренным образом изменяет 
отношение к признакам в лингвистике, где предполагается их «внешнее» происхожде-
ние. Показано, что разложение лингвистических пространств в признаковые простран-
ства влечет за собой независимость признаков и возможность декомпозиции объектов 
идентификации. Это принципиально отличает признаки от параметров. На основе не-
зависимости признаков можно сформулировать понятие размерности лингвистических 
пространств, которое определяется как наименьшее число признаков, описывающих 
лингвистическое пространство. В решетке лингвистических пространств действует опе-
рация деления, которая позволяет упростить выделение признаков. 
Заключение. Основными выводами являются следующие положения. Признаки, на 
основе которых производится идентификация объектов в категории, являются аб-
страктными математическими объектами, связанными с разложением лингвистиче-
ских пространств. Признаки независимы друг от друга и позволяют не только произ-
водить разложение пространств, но и декомпозировать на части сами объекты иден-
тификации. Их происхождение не связано с их присутствием в «окружающем мире», 
поэтому оно создает основу для возникновения языка. 

Ключевые слова: R-лингвистика, идентификация, признаки, разложение лингвистического 
пространства, независимость признаков. 
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Introduction. The representation of the model in the form of linguistic spaces connected by 
verbs does not significantly distinguish it from the relational model. You can show how you can go 
from one model to another. In fact, the linguistic model is not a model yet, because it has no 
predictive function. In this article, we will take a cardinal step: define the concept of sign, which in 
the language usually correspond to adjectives. From this point on, the linguistic model will have a 
predictive function and the similarity of relational and linguistic models will be a thing of the past.  

It is important to understand that a sign is an abstract mathematical object. It can be embodied 
in the world around us, but it is not necessary. This feature differs from the parameters – the actual 
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measured (sense organs or devices) characteristics of objects and phenomena. A sign stands 
between categories and the world in the form of a matching element. Its functions are extensive 
and on its basis the identification of concepts is carried out. This view of signs is the most important 
feature of this approach and distinguishes it, for example, from the views of cognitive linguistics. 

Methodology and sources. The results of the following mathematical sections are used as a 
research method: the theory of relations, the theory of lattices, the theory of data dependencies. 
The research materials are presented in the form of mathematical proofs of various properties of 
the linguistic model associated with the identification process. 

Results and discussion. 
The origin of the signs. 
1. Signs and decomposition spaces. 
Definition 1. Under a sign with the name A is understood a finite set D(A) of sign meanings 

(domain), consisting of not less than one element. The set D(A) has a selected element called 0 
(zero). The relation SА ‘to have the meaning of sign A’ is defined as follows: (x, 0) ∊ SА for any x 
from the universe; if (x, a) ∊ SА and (x, a') ∊ SА, then either a = 0 or a' = 0 or a = a'. If (x, a) ∊ SА, 
then it is said that object x has the meaning ‘a’ of sign A. This can also be written as x(A) = a. The 
relation SА is called the systematization relation. 

So, the sign has at least zero meaning for each object, and its scale (set of values) D(A) contains 
at least one element – 0. If the object has a meaning different than 0 of sign A, then it is the only one. 
Such a slightly strange definition of a sign can be explained as follows. The meaning ‘zero’ is actually 
intended to define another relation ‘to have the sign A’. If for some object x there is only the meaning 
x(A) = 0, it means that the object x does not have the sign A. If object x has another meaning of ‘a’, 
then, of course, object x has a sign A. Definition 1 actually combines two relations: ‘to have a sign’ 
and ‘to have a sign meaning’. If you look at the SА as a certain device to which objects from U are 
‘connected’, and its display shows the meaning of the sign A, then the zero meaning for some x 
shows that the property A is not characteristic of X. If the device gives a non-zero meaning ‘a’, then, 
on the contrary, x has this property (sign) and it has the meaning ‘a’. Of course, if x has the sign A, 
we will never see the meaning 0 on the display, although by definition the relation SА is always (x, 
0) ∊ SА. These are the costs of combining two relationships into one. In addition, the device SА for 
the same object cannot show different non-zero meanings. In general, signs are idealized properties 
of objects, which are usually the result of processing real data. 

In contrast to signs, parameters are the real properties of objects that we perceive using 
devices or senses. Parameters can have different meanings for the same object. For example, I can 
have a different pulse, eyes closed or open etc. So for parameters, the meaning 0 is not selected: it 
is one of the possible meanings. There are other differences that we will look at later. 

It should be mentioned in the first part was introduced the operation of mixing spaces ‘∘’. This 
operation forms a new space from the original spaces (on one universe), so that the original spaces are 
included in the mixed space and the least number of new categories is added. It follows from the 
definition of the mix operation that it can easily be extended to an arbitrary set of spaces. 

Definition 2. Let ℙ1 and ℙ2 two spaces of the universe U. We say that ℙ2 ≤ ℙ1 (ℙ2 is less 
than or equal ℙ1) if and only if ℙ2∘ℙ1 = ℙ1.  

From the definition of the mixing operation should be: if ℙ2∘ℙ1 = ℙ1, then each category of 
ℙ2 is the category ℙ1, it means ℙ2 ⊆ ℙ1. As the inclusion relation is the order relation, the relation 
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≤ is the same order relation. We denote by 𝐏𝐏 U the set of all spaces over U and call it a systematization 
lattice. In 𝐏𝐏 U there is the largest element (unit) and the smallest element (zero). The largest space is 
Boolean U, as it includes any space over U, and the smallest space consisting of a single element U, 
as this element enters any space over U. On the systematization lattice, the intersection operation of 
spaces, which was introduced in the first part, is also defined. 

Theorem 3. Set spaces 𝐏𝐏 U is a complete lattice. 
Proof. As noted, 𝐏𝐏 U has a unit (Boolean U). Let ℙ = ⋂ℙ′ for ℙ′ ∊ 𝐏𝐏 ′U ⊆ 𝐏𝐏 U, where 𝐏𝐏 ′U – some 

set of spaces from 𝐏𝐏 U. Show that 𝐏𝐏 ′U is the exact lower bound in 𝐏𝐏 U. Let there be a ℙ′′ such that 
ℙ<ℙ′′≤ℙ′ for all ℙ′ from the family 𝐏𝐏 ′U. Then ℙ′′ ⊆ ℙ′ for all ℙ′ of 𝐏𝐏 ′U, consequently, ℙ′′ ⊆ ⋂ℙ ′ 
and that means ℙ′′≤ℙ, which contradicts the assumption. Thus, ℙ = ℙ′′ and ℙ is the exact lower bound 
for the family 𝐏𝐏 ′U. Then, by 𝐏𝐏 U is a complete lattice [1]. 

Fig. 1 shows the lattice 𝐏𝐏  on a universe of two elements {a, b}. The ratio of the precedence 
in 𝐏𝐏  between the spaces is shown by arrows, the relation of the precedence inside the spaces is 
shown by solid lines. The lattice 𝐏𝐏  itself is an interesting formation, since it has many interesting 
properties that are of practical importance. E. g., for the lattice 𝐏𝐏 , a strengthened version of the 
Kurosh-Ore theorem on the decomposition of elements 𝐏𝐏  is fulfilled. 

Definition 4. A space ℙ is called indecomposable by the mix operation (hereinafter simply 
indecomposable) if ℙ = ℙ1∘ℙ2 implies ℙ = ℙ1 or ℙ = ℙ2. The decomposition of an arbitrary 
linguistic space ℙ in the form ℙ = ℙ1∘…∘ℙn is called an irreducible representation if ℙ1, …, ℙn 
are indecomposable and for any i = 1, …, n ℙi≰ℙ1∘…∘ℙi-1∘ℙi+1∘…∘ℙn. 

 
Fig. 1. Lattice of linguistic spaces for two objects 

Theorem 5. For each space of 𝐏𝐏  there exists a unique irreducible representation. 
Proof. We first show that in 𝐏𝐏  zero are indecomposable, as well as all spaces consisting of two 

categories (one of which is U), and only they. Let ℙ = {U, X}, where X ⊆ U, and for some ℙ1, ℙ2 
ℙ = ℙ1∘ℙ2. Then ℙ1 ⊆ ℙ and ℙ2 ⊆ ℙ. If both inclusions are strict, then ℙ1 = ℙ2 = {U}, which 
contradicts the assumption. Thus, either ℙ = ℙ1 or ℙ = ℙ2. Now suppose that ℙ = {U, X1, …, Xr}, r > 1. 
Then for ℙ1 = {U, X1}, …, ℙr = {U, Xr} we have ℙ = ℙ1∘…∘ℙr and, therefore, ℙ is decomposable. 

We now show the existence and uniqueness of the irreducible representation. First note that 
for the space ℙ = {U, X1, …, Xr}, r > 1, its representation can include the space {U, X} only if 
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X ∊ {X1, …, Xr}. This is due to the fact that if {U, X} is an element of the decomposition, then 
X ∊ ℙ. Let {U, Y1, …, Yk} be the set of all ∩-generators of the space ℙ. By definition, the  
∩-generator space {U, Yj} (j = 1, ..., k) must belong to each representation. Moreover, for any  
∩-generator, by definition, Yj ∉ ℙ1∘…∘ℙj-1∘ℙj+1∘…∘ℙk, therefore, ℙj≰ℙ1∘…∘ℙj-1∘ℙj+1∘…∘ 
ℙk. Finally, we note that ℙ1∘…∘ℙk = ℙ, therefore ℙ1∘…∘ℙk is an irreducible representation of ℙ 
and, moreover, it is unique because the set of ∩-generators is unique. 

We note several properties of the lattice 𝐏𝐏 , which follow from Theorem 5. 
Definition 6. A point (atomically generated) lattice is such a lattice, all of which elements are 

the union of points (atoms). 
Implication 1. The lattice 𝐏𝐏  is a point (atomically generated). Indeed, the points (atoms) in the 

lattice 𝐏𝐏  are spaces consisting of two categories, one of which is U, the operation of mixing replaces 
the of joining spaces, and any linguistic space is obtained by mixing some points (atoms). 

Implication 2. The length of the lattice 𝐏𝐏  is equal to the number of atoms (indecomposable 
spaces). As noted, the length lattice 𝐏𝐏  is 2n, where n is the number of elements in U, so the number 
of indecomposable elements in 𝐏𝐏  is also 2n. 

Definition 7. Let ℙ1, ℙ2 ∊ 𝐏𝐏  and ℙ2 ≤ ℙ1. We call ℙ3 quotient by dividing ℙ1 by ℙ2 
(ℙ3 = ℙ1/ℙ2), if: 

a) ℙ2∘ℙ3 = ℙ1; 
b) from ℙ2∘ℙ4 = ℙ1 it follows that ℙ3 ≤ ℙ4. 
Proposition 8. For any ℙ1, ℙ2 ∊ 𝐏𝐏  and ℙ2 ≤ ℙ1 there exists a quotient ℙ3. 
Proof. If ℙ1 is indecomposable, then either ℙ1 = ℙ2 or ℙ2 = {U}. In any case, ℙ1 = ℙ3. Let 

ℙ1 be decomposable. If ℙ2 = {U}, then ℙ1 = ℙ3. Let ℙ2 ≠ {U} and {X1, …, Xk} be the  
∩-generators of ℙ1. Then ℙХ1∘…∘ℙХk is the only irreducible representation of ℙ1 (ℙХi = {U, Xi}; 
i = 1, …, k). Let ℙY1∘…∘ℙYr be an irreducible representation of ℙ2. Remove from the irreducible 
representation for ℙ1 the elements included in both representations. The remaining mixing is 
denoted by ℙ3. Since ℙ2 ≤ ℙ1 and ℙ3 ≤ ℙ1 we get ℙ2∘ℙ3 ≤ ℙ1. However, by construction ℙ3 we 
have ℙ1 ≤ ℙ2∘ℙ3, therefore, ℙ2∘ℙ3 = ℙ1. If ℙ1 = ℙ2∘ℙ4, then at least ℙ4 must contain in its 
irreducible representation of space, including the generators that are part of the irreducible 
representation ℙ3, and therefore, ℙ3 ⊆ ℙ4. 

Remark 9. Returning to the discussion on the definition of a sign, it should be noted that a 
slightly strange definition of a sign, which requires (х, 0) ∊ SА for any x from the universe, made it 
possible to obtain a systematic lattice with a number of remarkable properties. Another definition of 
a sign leads to a different, poorer lattice [2]. Since we are dealing with an abstract definition of a 
sign, we have the opportunity to make a choice, especially since it does not affect the final result. 
Another thing when it comes to real characteristics. For example, for indirect additions, a different, 
less convenient lattice is obtained, and in this case we cannot act in the same way as with signs. 

2. Dimension of linguistic space. 
We must understand that the main thing is the transition to the forecast. In other words, the main 

thing is the transformation of somehow structured data into a model. We will return to this issue a 
little bit later, but for now, we note that from the point of view of the forecast, it does not matter 
whether the spaces are indecomposable if they participate in an irreducible representation. The main 
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thing is to find the signs that give such partitions of the universe that lead to the decomposition of 
the space according to these signs. This means that it is necessary to find such partitions U so that: 

a) in each partition, the partition classes do not intersect and coincide with some  
∩-generators of the space; 

b) the classes of all partitions cover the set of all ∩-generators space.  
So, let R be a relation on the set of ∩-generators 𝐎𝐎  = {X1, …, Xk} of the space ℙ, defined as follows: 
a) for any i = 1, …, k (Xi, Xi) ∊ R; 

b) if i ≠ j, (Xi, Xj) ∊ R if and only if Xi, ⋂ Xj = ⌀. 
The ratio R is tolerance. Recall that the tolerance class is the maximum set of elements that 

are pairwise related to each other by the relation R. In accordance with the foregoing, to select the 
number and type of multivalued signs, you must select the smallest number of tolerance classes R 
covering the entire set 𝐎𝐎 . In various aspects of tolerance are considered in detail, the concept of 
basis is introduced [3]. It should be noted that the concept of covering classes of tolerance and the 
concept of the basis of tolerance turn out to be significantly different, since the basis is also 
required to preserve the entire relationship. In general, there may be several coverages with a 
different number of tolerance classes within them. 

Definition 10. The dimension of the linguistic space is the smallest number of tolerance 
classes on the set of ∩-generators covering this set.  

In other words, dimensionality is the smallest number of signs that can be used to describe 
linguistic space. For example, any equivalence generates a one-dimensional space, as for its 
identification is enough to have one sign with the number of nonzero meanings equal to the number 
of equivalence classes. Actually, we call the dimension of linguistic space the minimum number 
of one-dimensional spaces sufficient for its description. Or, for example, the dimension of a human 
face is equal to the number of signs in the identikit plus deviations from the default position. The 
coordinates of my face are: 16th nose, shifted 2mm to the right, 45th lips, etc. If you set the 
meanings of all these coordinates, you will see me. 

 
a b c d 

 
e f g 

Fig. 2. Signs spaces for the structure of binary relations  
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Let us turn to the example of the linguistic space from, shown in fig. 2a [4]. In this linguistic space 
there are five ∩-generators: {ETOQ}, {EOQS}, {ET}, {O}, {S}. There is no universe in this list, 
because we are not interested in signs with one zero meaning. In fig. 2b, the lines are connected to 
tolerant ∩-generators (reflexive arcs are not shown), the ellipses cover the tolerance classes. 

From fig. 2b it can be seen that there are three classes of tolerance on the set of ∩-generators. 
All three classes are necessary to cover the set of ∩-generators. Thus, there is only one option to 
choose the number and type of signs, so that the dimension of this space is three. For further 
discussion of this example, I will reveal the nature of the objects in this space. The objects of the 
space are different binary relations: E-equivalence, T – tolerance, O – order, Q – quasi-order, 
S – strict order. So, one of the signs must have one nonzero meaning, which have objects E, O, Q, S 
and the object T does not have it. This sign is ‘transitivity’ with meanings: 0 and ‘transitive’. The 
meaning ‘transitive’ will not have only the object T. The space for this sign is shown in fig. 2c. The 
following sign corresponds to another tolerance class consisting of two ∩-generators: {ETOQ} and 
{S}. Obviously, this partition corresponds to the sign of ‘reflexivity’. It is important to note that the 
members of this class ∩-generator cover the whole universe, breaking it into two parts. Therefore, 
the sign for this tolerance class can have two or one nonzero meaning depending on whether we are 
going to send one partition class to the zero-value region with the formulation ‘the object does not 
have the reflexivity sign’. So, the first version of the scale of sign ‘reflexivity’ has a meaning of 0 
and the meaning of ‘reflexive’. In this case, the object S does not have the sign (fig. 2d). In the second 
variant, the sign has the values 0, ‘reflexive’ and ‘antireflexive’. In this case, the object S matches 
the meaning of the “anti-reflective” (fig. 2e). ∩-generators of the third class of tolerance do not cover 
the whole universe, so there is only one option: three non-zero values of the sign. This sign obviously 
corresponds to symmetry and has four values: 0, ‘symmetric’, ‘anti-symmetric’, ‘asymmetric’. 
Under anti-symmetric relation here is defined as the non-symmetrical relation in which each element 
is in this relation with itself (reflexivity). The asymmetric relation is understood as the non-
symmetrical relation which does not allow the reflexivity of elements. And again because of 
redundancy, if we used for the sign of ‘reflexivity’ the variant fig. 2e, which is already presented  
∩-generator S, it would be possible in the sign of ‘symmetry’ to remove the meaning of 
‘asymmetrically’. The space for the sign ‘symmetry’ is shown in fig. 2f. 

So, the linguistic space of fig. 2a is described by minimum with three signs with specific 
meanings, which, due to redundancy, can vary slightly. Fig. 2g depicts the recognition tree of 
binary relations. The bold typeface identifies the abbreviated names of the signs being analyzed, 
in small letters – the meanings of these signs; the leaves of the tree are marked by relationships 
from the universe. At first glance, it seems strange that the problem of recognizing relations here 
is solved only with the use of two signs, while the dimension of space is three. This is the difference 
between the task of recognizing objects and the task of identifying categories of a certain linguistic 
space. The identification of space categories is aimed to identify all categories, and not just 
recognizing species. However, the task of recognition is an essential part of identification. We will 
return to this issue a little later. 

Up to this point, all reasonings, starting with the axioms of categorization, were of a purely formal 
nature. Even the signs, their number, the number of their meanings and the correspondence of the 
meanings to the objects of the universe are the consequence of the decomposition of spaces and do not 
require the presence of an ‘external world’. But there comes a time when the calculated signs should 
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get real content. In the considered example, everything happened was just fine, but only because I 
initially moved from the signs when forming the linguistic space. But how to find in a real object the 
signs with calculated properties? Here the division operation can help.  

Suppose we learned (guessed, spied) that there is a sign of ‘symmetry’, which has four 
meanings: 0, “symmetrical”, “antisymmetric”, “asymmetrical”. Thus, on this sign, we get the 
space shown in fig. 3a. 

 
a b c d 

Fig. 3. Division in the decomposition of linguistic spaces 

This sign splits the universe into four non-intersecting classes (the object Q has no sign 
‘symmetry’). All categories of this space are included in the space in fig. 2a, so it is less than the 
original. In accordance with proposition 8, there exists a quotient of dividing the original space 
into the space of fig. 3a. The quotient is presented in fig. 3b. This quotient is decomposed into two 
spaces, presented in fig. 3c and 3d. The space in fig. 3d corresponds to the “transitivity” sign, and 
the space in fig. 3c – the sign of “reflexivity”. In this case, the sign “reflexivity” has only two 
meanings: 0 and “reflexively”. So, the division operation allows us to simplify the decomposition 
of spaces when some information about a part of (real) signs is already available. 

Example 11. Consider the use of the Theorem 5 with the example of the trophic ratio of 
freshwater fish. Suppose a certain observer, sitting on the bank of a pond, observed the hunting 
of some fish for others, and recorded these observations as a relation in fig. 4a. Here in the left 
and right columns are fishes from the pond: pike, perch, crucian, and roach. Two fishes are 
connected with the line, if the fish on the left ate the fish on the right. According to these 
observations, one can construct space and co-space (fig. 4b) as it was described in [4]. Since 
space and co-space are defined on the same universe, they can be mixed into one space (fig. 4c). 
Moreover, as noted in, dual isomorphism transforms into dual epimorphism [4]. In fig. 4c, the 
action of the verb ‘eat’ is shown by arrows, so now, for example, two categories PPe and Pe are 
mapped into one category CRPe. Note also that one of the types of CR in this space includes two 
fishes at once: crucian and roach, since from the point of view of ‘eating’ they are 
indistinguishable. By the method described above, we can determine the dimension of this space 
and select two signs, the spaces of which are depicted in fig. 4d and fig. 4e. 

 
a b c d e 

Fig. 4. Decomposition of linguistic space  
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Now it is necessary to identify the calculated signs with the real properties of these fishes. For 
the sign in fig. 4e, I easily found such a property – this is the presence of teeth. Pike and perch have 
teeth, and crucian and roach do not have this sign. For another sign, the reader may suggest some 
suitable property, but nothing good came to my mind except size. In other words, the fish is ‘big’ 
(belongs to category P), if its size exceeds 30 cm, and ‘small’ (belongs to category CRPe), otherwise. 
Now, for example, if we meet a big and toothy fish, then we will predict its aggressive behavior 
towards all fishes in the pond. We have a forecast! Moreover, if we are confronted with a large pike 
perch, we will also predict its aggressive behavior towards all fish, although we have not previously 
observed the behavior of pike perch! Our structure has become a model. It is clear that this is an 
extremely important evolutionary conquest. It allows you to predict and act even in a collision with 
new objects. So, systematization turns interconnected spaces into a model due to a transition 
consistent with spaces to the definition of categories through signs. 

Of course, there are mistakes in modeling. So, probably, it happened when the first Europeans 
found themselves on the Amazon and were confronted with piranhas. In principle, the forecast for 
piranhas is similar to perch: a small, toothed fish. Probably, some pioneers strongly regretted their 
prediction. As a result, we had to change the original trophic relation and create new categories 
with new verbal connections, and then find new signs for these new categories. In the end, the 
model was adjusted and again began to give correct predictions. 

3. Centaurs. 
This, at first glance, a bit strange section, which seems to stand apart, is essential for 

understanding thinking in general and language in particular. In the previous section, we looked 
at what happens to spaces when decomposed into simple components – signs. Now we could 
give another definition of a sign: signs are the allocated spaces into which linguistic spaces are 
decomposed. We chose the atoms as signs because the systematization space is an atomically 
generated lattice (Implication 1 of Theorem 5). Then we added some more gratings to them to 
reduce the number of decomposition elements. But our choice is only our choice. It is possible 
that the reader will consider it sensible to make another choice. In this section, we digress from 
the concrete embodiment of the type of signs. The main thing is that the spaces are decomposed 
in them. And within the framework of this view, we will be interested in what happens to the 
signs when they are mixed in restoring space?  

To answer this question, we will have to turn to data dependencies, though in some not quite 
traditional form. For example, mutual dependence, being by its nature the simplest dependence of 
a compound, in our case acquires a special “layered” character [5]. Later in this section we will 
use the template definition of dependencies. 

Definition 12. Let А = А1 … Аn, В ⊆ А, С = А–В. A sign B is called potentially 
independent (in the context of A) if for any x ∊ U from (x, b, c) ∊ SA, (x, b', c') ∊ SA and 
(x', b, c') ∊ SA follows (x, b, c') ∊ SA. 

The definition of potential independence corresponds exactly to the definition of mutual 
dependence [6]. 

Definition 13. Let А = А1 … Аn, В ⊆ А, С = А–В. A sign B is called independent (in the 
context of A) if for any x ∊ U from (x, b, c) ∊ SA and (x, b', c') ∊ SA it follows (x, b, c') ∊ SA. 

The definition of independence corresponds to the definition of a multivalued dependence [6]. 
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For mutual dependence (denoted by ∼), which corresponds to potentially independent signs, 
the following properties are satisfied [5]: 

1. If U∼B, then В∼U. 
2. If U∼B, then U∼С, so instead of U∼B you can write U∼B/C. 
3. All three mutual dependencies are equivalent: U∼В/С, В∼U/С, С∼U/В. 
4. If the mutual dependence U∼B/C is fulfilled in SA, then U∼B'/C' is fulfilled in SA[UB'C'], 

where A' ⊆ A, B' ⊆ B. Here SA[UB'C'] denotes the projection of the SA relation on the UB'C' 
attributes. The last fifth property defines the following. 

Lemma 14. If U∼В/С in SA[UBC], and U∼D/BС in SA, then U∼В/СD, where A = BCD and 
B, C, D are not mutually intersecting. 

Proof. Let (x, b, c, d) ∊ SA, (x, b', c', d') ∊ SA and (x', b, c', d') ∊ SA. Since (x, b, c) ∊ SA[UBC], 
(x, b', c') ∊ SA [UBC], (x', b, c') ∊ SA[UBC] and U∼B/C in SA[UBC], then (x, b, c') ∊ SA[UBC]. 
Therefore, there is d'' such that (x, b, c', d'') ∊ SA. Since (x, b', c', d') ∊ SA and (x', b, c', d') ∊ SA, then by 
virtue of U∼D /BС (x, b, c', d') ∊ SA. Thus, in SA it is performed U∼В/СD. 

The meaning of Lemma 14 is that if we connect the systematization relations in such a way 
that mutual dependence is fulfilled, then all potentially independent signs that are already the part 
of the resulting relation will still maintain potential independence. Conversely, property 4 allows 
us to state that if all signs are potentially independent, then the projections of the systematization 
relation on a part of the signs retain potential independence. 

Lemma 15. Let SAi = SA[UAi], where А = ⋃ A𝑖𝑖
𝑛𝑛
𝑖𝑖=1 , Аi ⋂ Aj = ⌀ for any i ≠ j; i, j = 1, …, n. 

Signs А1, …, Аn are potentially independent if and only if for any tuple of signs (а1, …, аn) ∊ SA[A] 
(а1, …, аn)∆ = ⋂ 𝑎𝑎𝑛𝑛

𝑖𝑖=1 i
∆, where (а1, …, аn)∆ = {x ∊ D(U)&(x, а1, …, аn) ∊ SA}; ai

∆ = {x ∊ D(U)& 
&(x, ai) ∊ SAi}. 

Proof. We prove by induction on the number of signs. For n = 2, from SAi = SA[UAi], it 
follows that (а1, а2)∆ ⊆ а1

∆ ⋂ а2
∆ for any (а1, а2) ∊ SA[A]. Now let х ∊ а1

∆ ⋂ а2
∆. Then for some 

а'1, a'2 we have (х, а1, a2’) ∊ SA, (х, а1’, а2) ∊ SA and (а1, а2) ∊ SA[A]. From here, by virtue of 
potential independence, we get (х, а1, а2) ∊ SA and х ∊ (а1, а2)∆, so that, (а1, а2)∆ = а1

∆ ⋂ а2
∆. 

Conversely, let (х, а1, a2) ∊ SA, (х, а'1, a'2) ∊ SA and (а1, а'2) ∊ SA[A]. Then х ∊ а1
∆, х ∊ а'2∆, 

which means х ∊ (а1, а'2)∆ and signs А1, А2 are potentially independent. 

Let the lemma be true for all 2≤n≤k and let n = k+1. Denote by A' the set ⋃ A𝑖𝑖
𝑘𝑘
𝑖𝑖=1 . By virtue 

of the fourth property of mutual dependence, the signs А1, …, Аk are potentially independent in 
SA[UA']. By the induction hypothesis, for every (а1, …, ак) ∊ SA[A'] the equality 
(а1, …, ак)∆ = ⋂ 𝑎𝑎𝑘𝑘

𝑖𝑖=1 i
∆ is fulfilled. Since the sign Аk+1 is potentially independent in SA, then for 

everyone (а1, …, аk+1) ∊ SA[A] is true (а1, …, аk+1)∆ = (а1, …, аk)∆ ⋂ аk+1
∆ = ⋂ 𝑎𝑎𝑘𝑘+1

𝑖𝑖=1 i
∆. 

Conversely, suppose that one of the signs, say, Аk+1 is not potentially independent, but for every 
(а1, …, аk+1) ∊ SA[A], (а1, …, аk+1)∆ = ⋂ 𝑎𝑎𝑘𝑘+1

𝑖𝑖=1 i
∆. Then there are (х, а1, …, аk+1) ∊ SA, 

(х, а'1, …, а'k+1) ∊ SA, (а'1, …, a'k, аk+1) ∊ SA[A], but (х, а'1, …, a'k, аk+1) ∉ SA. Hence х ∊ аk+1
∆, 

х ∊ а'1∆, …, х ∊ а'k∆ and, therefore, х ∊ ⋂ 𝑎𝑎′𝑘𝑘
𝑖𝑖=1 i

∆ ⋂ ak+1
∆ = (а'1, …, a'k, аk+1)∆, which contradicts 
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the assumption that there is no potential independence for Аk+1. Thus, signs А1, …, Аk+1 are 
potentially independent. 

Lemma 15 clarifies the meaning of the concept of potential independence. It justifies a 
parallel independent analysis of the signs of the objects of the universe, followed by their general 
mixing into one sign through conjunction. Thus, the potential independence of signs is 
equivalent to the possibility of conjunctive assessment of signs. However, from the potential 
independence it does not follow that with a conjunctive analysis of the meanings of the signs, 
any category of linguistic space can be identified. 

Definition 16. Let SA be a systematization relation, SAi = SA[UAi] А = ⋃ A𝑖𝑖
𝑛𝑛
𝑖𝑖=1 , Аi ⋂ Aj = ⌀ 

for any i ≠ j; i, j = 1, …, n; ℙ, ℙ1, …, ℙn are the spaces according to the corresponding 
systematization relations. The relation SA is called covering if ℙ1∘…∘ℙn ⊆ ℙ. 

Obviously, if SA is covering, then ℙi ⊆ ℙ for any i = 1, ..., n. Conversely, ℙi ⊆ ℙ for any 
i = 1, ..., n, then ℙ1∘…∘ℙn ⊆ ℙ and, therefore, SA is covering. 

Theorem 17. Let SA be a systematization relation, SAi = SA[UAi] А = ⋃ A𝑖𝑖
𝑛𝑛
𝑖𝑖=1 , Аi ⋂ Aj = ⌀ 

for any i ≠ j; i, j = 1, …, n. If SA is a covering and the signs А1, …, Аn are potentially 
independent, then ℙ = ℙ1∘…∘ℙn. 

Proof. Let X be a ⋂-generator in ℙ. In accordance with there exists a tuple 
(а1, …, аn) ∊ SA[A] such that (а1, …, аn)∆ = Х. By Lemma 15, Х = ⋂ 𝑎𝑎𝑛𝑛

𝑖𝑖=1 i
∆ [4]. But ⋂ 𝑎𝑎𝑛𝑛

𝑖𝑖=1 i
 

∆ ∊ ℙ1∘…∘ℙn, since аi
∆ ∊ ℙi for each i = 1, …, n. Thus, each generator of ℙ belongs to ℙ1∘…∘ℙn, 

which means that ℙ ⊆ ℙ1∘…∘ℙn. Since SA is a covering, ℙ = ℙ1∘…∘ℙn. 
Implication. If the signs А1, …, Аn are independent, then the relation SA is covering. 
Proof. So, let the signs be independent, but SA is not covering. Then in ℙ1∘…∘ℙn there is a 

category X not belonging to ℙ. Of course, in this case, the ⋂-generators cannot coincide in ℙ1∘…∘ℙn 
and ℙ. Since the proof of Theorem 17 implies that ℙ ⊆ ℙ1∘…∘ℙn, then in ℙ1∘…∘ℙn there is a  
⋂-generator X' that is absent in ℙ. In accordance with, there are аi (i = 1, …, n), such that Х' = ⋂ 𝑎𝑎𝑛𝑛

𝑖𝑖=1 i
∆ 

[4]. Thus, for any x ∊ Х', (х, аi) ∊ SAi. Since the signs are independent, in SA there are n multi-valued 
dependencies and SA is equal to the connection of all SAi. But then for any х ∊ Х' (х, а1, …, аn) ∊ SA, 
which means, Х' ∊ ℙ, which contradicts the assumption. Thus, SA is covering. 

Remark 18. From the condition of Theorem 17 one cannot exclude the requirement that SA 
be a covering one. In fig. 5a shows the relation SPP’, where D(U) = {a, b, c}. 

 
a b c d e 

Fig. 5. Illustration of the characteristics of independence and potential for independence of signs 
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Fig. 5b, 5c, 5d, e shows ℙ1, ℙ2, ℙ1∘ℙ2 and ℙ respectively. Although in relation to SPP’, the 
signs of P and P’ are potentially independent, but ℙ ≠ ℙ1∘ℙ2, because SPP’ is not a covering one. 
The reason for this is a combination meanings of signs (tuple 10), which is absent in the original 
relation. In principle, this can be avoided if in the process of identifying objects on signs the initial 
space obtained on the basis of observing the behavior of objects is controlled, and on the basis of 
this, ‘inadmissible’ combinations of signs are rejected. 

Remark 19. Independence of signs is not equivalent to the equality ℙ = ℙ1∘…∘ℙn, since 
covering can be a relation with potentially independent signs. For example, a relation consisting 
of two tuples {(х, а1, в1), (х, а2, в2)} has potentially independent signs and is simultaneously 
covering, but its signs do not have multivalued dependencies. For this reason, if the equality 
ℙ = ℙ1∘…∘ℙn is satisfied, then it means that either the signs are independent or the signs are 
potentially independent and the ratio covering. It has already been noted that no matter how long 
we fly in mathematical abstractions, it is time to return to the world and compare the abstract signs 
of something real from life, as it was in example 11. From this section it becomes clear that 
whenever we use combinations of signs we secretly consider them independent (potentially 
independent), or, what is the same, we believe the existence of a multivalued (mutual) dependence 
of each sign on the objects of the universe. But are the signs found independent? After all, this is 
not what guided us in their choice when we looked at the world. Therefore, it is important to 
understand the boundaries of a safe retreat from the property of independence. 

The safest easing of the require for independence is the potential independence of signs in 
combination with the covering relation. So, when we analyze signs and use their combinations, on the 
one hand, we mix their spaces to ℙ1∘…∘ℙn, and on the other hand, we joined private systematization 
relations SAi by the attribute U, as if there are multivalued dependencies. Denote the product ℙ1∘…∘ℙn 
by ℙ'. For each ⋂-generator from ℙ’ according to there exists a certain tuple of signs values (а1, …, аn) 
for which the set (а1, …, аn)∆ coincides with this generator [4]. Choose for each ⋂-generator one such 
tuple and combine products (а1, …, аn)∆ ×{(а1, …, аn)} in one new relation SA'. By definition of this 
relation SA' ⊆ ⋈SAi (for all i = 1, …, n; ⋈ – the operation of joining relations on the general attribute 
U) and SA' generates the same space ℙ'. Since for each (а1, …, аn) of SA' [A] by construction is 
performed (а1, …, аn)∆ = ⋂ 𝑎𝑎𝑛𝑛

𝑖𝑖=1 i
∆, then by virtue of Lemma 15 all signs are potentially independent. 

Recall that D (U) is also a ⋂-generator and for it the tuple (0, ..., 0) will enter SA'. Thus SA' is covering 
and for it ℙ' = ℙ1∘…∘ℙn. Since for each ⋂-generator in SA' is only one tuple of the values of signs that 
is the smallest relation for which the equality of theorem 17 holds true. Thus, the safe range of deviations 
from the independence of the signs extends from SA' to the joining of systematic relations of the signs. 

The next weakening is the rejection of the property of cover ability. In this case, it seems that 
it is necessary to control the permissible combinations of signs in relation to the original linguistic 
space, as the mixing of spaces can generate invalid combinations. But how do you know if some 
combination is acceptable? After all, we do not know the ‘correct’ systematized relation. This is a 
problem. In any case, it is impossible to retreat further, since the violation of potential 
independence by virtue of Lemma 15 blocks the possibility of conjunctively combining the results 
of the analysis of individual features, and hence mixing the corresponding spaces. 

So, we always have to assume the independence of the real signs. If we are wrong in this 
hypothesis, we may be helped by the potential independence of features and the property of 



ДИСКУРС. 2019. Т. 5, № 5 
DISCOURSE. 2019, vol. 5, no. 5 

 

111 

coverability, but we may not know about it. It is because of the independence of a certain way 
the selected signs determine the dimension of linguistic space like orthogonality in ordinary 
spatial representations. 

Remark 20. So, the signs are always associated with multivalued or mutual dependencies, and 
thus, with the decomposition of objects or independence. This is a consequence of the nature of 
signs, arising from the method of decomposition of space. In example 11, the sign 'teeth' is clearly 
a consequence of the decomposition of the fish, which allocates such a part of it as teeth. But the 
'size' sign is not an obvious result of decomposition. However, as a 'size' is a sign, then it is 
independent of having teeth: toothy fish can be both small and large, just like toothless fish. Here 
is one of the dividing lines between signs and parameters. 

Remark 21. The hypothesis of the independence of signs (and the associated decomposition 
of objects) is a universal tool of consciousness, although is not always aware of them. Any 
consciousness uses this hypothesis. In the culture of all peoples of the world, we find unacceptable 
combinations of features arising from the violation of the hypothesis of independence, or rather 
from its incorrect usage. All these dragons, centaurs, mermaids, sphinxes, angels and other 
mythical creatures are the result of unlimited use of the hypothesis of independence of signs. But 
we know there are no centaurs. How can we be sure of that? Because subconsciously we 
understand that the independence of signs acts only within the concept of 'people’ or 'horses', but 
does not act on the united universe. This reminds of reminiscent of the futility of the interspecific 
interbreeding of animals, and only unbridled imagination rises to the surface of the mind these 
devils with hooves, tails, fur and horns. 

Another example of a centaur can be obtained from the example of the space of different binary 
relations. As signs we have identified ‘reflexivity’ and ‘symmetry’. These signs are independent and 
therefore there must be a reflexive and asymmetric relationship. But this relationship cannot be, 
because the asymmetry does not allow the reflexivity. Here again, there is an incorrect use of 
independence: the independence of the signs of 'reflexivity’ and 'symmetry' is performed only in the 
presence of some relation x, and this relationship in our universe does not exist. 

Furthermore, for example, in the described space, the ⋂-generator {ET} is completely 
described by the value ‘symmetrically’. In other words, any symmetric relation here is tolerance 
or equivalence. But within the broader universe, there are symmetric relationships outside of this 
list. Therefore, tolerance is a reflexive and symmetrical relationship at the same time. So, in 
another universe, the sign of ‘symmetry’ expands and does not describe any category by itself. By 
analogy, people often choose such broad signs to create the necessary signs using conjunctions. In 
it was mentioned the case of the erroneous definition of Linnaeus primate squad, for which he 
chose the signs of ‘five-toed limb’ and ‘two mammary glands’ [4]. Both signs are broad and do 
not correspond separately to any category of classification of animals. But the conjunction of these 
signs is a new sign, which according to Linnaeus could well be suitable for the Primate squad. 
Such conjunctions often replace the calculated signs, especially since according to the results of 
this section, the signs themselves are always analyzed conjunctively. 

Centaurs draw our attention to the fact that universums are chosen for a reason. They are 
changeable and are themselves categories in some spaces. This leads to the fact that within a certain 
category another space is constructed from a certain space, in which the initial category is considered 
as a universe. Such nesting (recursion in depth) can be propagated deeply enough. In addition, there 
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may be a recursion in depth for a sign that is represented through other particular signs. For example, 
'head' is one of the signs in the decomposition of the whole person, but this sign itself is decomposed 
into signs of the identikit. This can be continued until we have exhausted the resource of independence. 

This article took an important next step from the axiomatic approach in categorization to its 
continuation in identification [4]. Since the definitio is abstract, until now the linguistic data model 
does not impose any requirements on the world, and vice versa. Identification itself is an 
intermediate link between the world with its limitations and an abstract model, since signs, being 
elements of the decomposition of linguistic spaces (Theorem 5), can always be formed, regardless 
of the actual initial data expressed in parameters. In the future we will see that the very emergence 
of language would not have been possible without this construction, which is guaranteed to exist 
outside the limits of the senses. 

Signs resemble parameters, but their nature is completely different. Their nature is associated 
with the decomposition of spaces. In addition, as it turned out, they are also associated with the 
decomposition of the concepts themselves into parts and with the use of ideas about data 
independence. Thus, the signs create a movement ‘in depth’ concepts.  

Conclusion. The appearance of signs may seem strange, given that the linguistic model itself 
is built on real observation data, and movement in the opposite direction for some reason involves 
the use of some new artificial objects. But if we recall that the task of modeling is to forecast 
behavior, it becomes clear: without a certain structuring of the input information flow, it is 
impossible to make a quick and effective forecast. 

The concept of a sign is introduced in this article, and it is shown that many such signs always 
exist. If the concept of a sign is expanded a little, then there is a slight variability in the choice of 
the composition of signs and the ability to determine the dimension of linguistic space as the 
smallest number of independent features that fully describe the concepts of space. 

Finally, the article shows that signs are inherently independent (potentially independent), 
which creates the basis for decomposing objects and analyzing data in parts. 
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